a2 United States Patent

Bender et al.

US009214957B2

US 9,214,957 B2
*Dec. 15, 2015

(10) Patent No.:
(45) Date of Patent:

(54) CHECKSUM CALCULATION, PREDICTION

AND VALIDATION
(71) Applicant: International Business Machines
Corporation, Armonk, NY (US)
(72) Inventors: Carl A. Bender, Highland, NY (US);
Michael J. Cadigan, Jr., Poughkeepsie,
NY (US); Nihad Hadzic, Poughkeepsie,
NY (US); Howard M Haynie,
Wappingers Falls, NY (US); Jeffrey M.
Turner, Poughkeepsie, NY (US);
Raymond Wong, Poughkeepsie, NY
(US)
(73) Assignee: International Business Machines
Corporation, Armonk, NY (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 431 days.
This patent is subject to a terminal dis-
claimer.
(21) Appl. No.: 13/653,761
(22) Filed: Oct. 17,2012
(65) Prior Publication Data
US 2013/0042168 Al Feb. 14,2013
Related U.S. Application Data
(63) Continuation of application No. 13/117,294, filed on
May 27, 2011, now Pat. No. 8,683,307.
(51) Imt.ClL
GO6F 11/00 (2006.01)
HO3M 13/09 (2006.01)
GO6F 11/10 (2006.01)
(52) US.CL
CPC ... HO3M 13/096 (2013.01); GOGF 11/1004

(2013.01)

(58) Field of Classification Search
CPC HO4L 69/22; HO4L 69/16; HO4L 1/0041;
GOG6F 11/1104; GOGF 11/16; GOGF 11/0041;
HO3M 13/096
714/758, 799, 776, 807, 370/463, 464,
370/476
See application file for complete search history.

USPC

(56) References Cited

U.S. PATENT DOCUMENTS
5,058,110 A * 10/1991 Beachetal. 370/464
5,522,039 A 5/1996 Snyder et al.
(Continued)

FOREIGN PATENT DOCUMENTS

EP 0421693 A2 4/1991

0632386 A3 12/1996
(Continued)

OTHER PUBLICATIONS

International Search Report and Written Opinion for International
Application No. PCT/IB2012/052603, International Filing Date May
24, 2012, 12 pgs.

(Continued)

Primary Examiner — David Ton
(74) Attorney, Agemt, or Firm — Cantor Colburn LLP;
Steven Chiu

(57) ABSTRACT

A calculation, prediction and validation method can include
receiving a portion of a data packet in a data buffer, comput-
ing, in a processor, information related to the checksum of'the
data packet based on the portion of the data packet and pro-
cessing the data packet in the processor.

4 Claims, 7 Drawing Sheets

200

HOST 8YSTEM

201\‘
A -
3

CHECKSUM
COMPARISON
PACKET
PROCESSING

25

FULL CHECKSUM
NGIN

215

EARLY INSPECTION
ENGINE

PACKET
PROCESSING

215

I

202 /{

LOGAL AREA NETWORK (LAN) |

US 9,214,957 B2
Page 2

(56)

6,088,676
6,279,140
6,530,061
6,654,823
6,728,929
6,964,008
7,134,070
7,181,675
7,188,250
7,283,528
7,779,330
7,958,436
8,225,188
2002/0026620
2004/0163025
2004/0218623
2005/0192782

References Cited

U.S. PATENT DOCUMENTS

A
Bl
Bl
B2
Bl
Bl
B2
B2
BL*
Bl
Bl
B2
B2
Al
Al
Al*
Al*

7/2000
8/2001
3/2003
11/2003
4/2004
11/2005
11/2006
2/2007
3/2007
10/2007
8/2010
6/2011
7/2012
2/2002
8/2004
11/2004
9/2005

White, Ir.

Slane

Labatte

Soejima et al.

Luong

Van Meter, II1

Thakur et al.

Mantog

Alfierietal.ccce..... 713/181
Lim et al.

Cocos

King et al.

Basso et al.

Johansson et al.

Lakaniemi

Goldenberg etal. 370/463
Lee i 703/2

2009/0097486 Al 4/2009 Carlini et al.
2010/0161750 Al 6/2010 Pandya
2010/0272125 Al* 10/2010 Frankeetal. 370/476

FOREIGN PATENT DOCUMENTS

EP 0585435 B1 ~ 12/2000

EP 1826693 Al 8/2007

EP 1865430 A2 12/2007

WO 2009149895 Al 12/2009
OTHER PUBLICATIONS

Final Office Action for U.S. Appl. No. 13/117,294, mailed Aug. 29,
2013, 11 pages.

Non Final Office Action for U.S. Appl. No. 13/117,294, mailed Mar.
27,2013, 9 pages.

Non Final Offce Action for U.S. Appl. No. 14/068,347, mailed Dec.
16, 2013, 12 pages.

U.S. Appl. No. 14/068,347; Notice of Allowance; Date Filed: Oct.31,
2013; Date Mailed: Mar. 25, 2014; pp. 1-9.

* cited by examiner

US 9,214,957 B2

Sheet 1 of 7

Dec. 15, 2015

U.S. Patent

- (o) uaovaner -
X TR

¥ 4 > ” 7 - . :
. . . P P " p -
’ L4 ’ L4 P ’ ., , ,
4 P ’ , X)) f g
. ’ . g ’
’ 4 ’ ‘ m KMD<MI Nl_ ¢ . v
. . ’ , j f g
. . . . P , , , s
. . . . ’ , , , \
, . . . , , , §
v v v v ’ , , , ,

(0)¥30¥3H 0an3sd

US 9,214,957 B2

Sheet 2 of 7

Dec. 15, 2015

U.S. Patent

¢ Ol

(NVT) YHOMLIN Y34Y T¥00T L~
A
_ I
NOILY3SNI |_-622
WNSYO3HD
I ¥344n4
_ Xd
ONISSI0Nd <> INION3
IPvd 042 NOILD3dSNI ATHYI[612
A
INION3 INION3
WNSYDIHO TIN4 [697 ANSYOFHO TN [-02C
Y
INIONT ONISSI0Nd
NOILOTSNI ATava [S-092 IV [
1 4344ng
X1 662 |
NOSIYYAINOD
ANSOFHD [-082
Y \
W3LSAS LSOH 107

40¢

US 9,214,957 B2

Sheet 3 of 7

Dec. 15, 2015

U.S. Patent

WNSMJ3HI -
11N4 Q3L93dX4
\
0€€
Q009 WNSHHI Y3AY3H €T 90¢

WNSYDIHD
03LNdWNOD ¥AHOAN3Sd [-6ee
WNSYDIHD
@31NdINOD 77 ™-(07¢
WNSYDIHD
v1vQ q3Suvd ™-GI¢
WNSYDIHD
¥QH £103LNdNOI ™N-01¢
WNSYDIHD
MOHE1QILovELa [N60€

US 9,214,957 B2

Sheet 4 of 7

Dec. 15, 2015

U.S. Patent

y
0009 NNSYHOVLYC 0) ANSH0 ~0ig
X
Gig
NSO
T3 o
00g
631310109 ANSYIFHO TN 3K SE30V3H
7 03LNdN09 ANSYO3HO T4 G3L03dX
Y «
T 1340
. L

007

US 9,214,957 B2

Sheet S of 7

Dec. 15, 2015

U.S. Patent

d0L3v4 WNSHOFHI LNVATTIHY|

90l

909

WNSMJ3HI ¥3aYH
00N3Sd 03LNdN0I

YLvQ INVAS134d| TYNOILDO 43HLO 8

WNSMO3HI ¥QH ¢103LNdINOJ

IMd NI NNSHITHO €71

WNSHJ3HI
daH €103LNdWN0I

609

009

US 9,214,957 B2

Sheet 6 of 7

Dec. 15, 2015

U.S. Patent

¥0LOVA
) WNSYDTHD INVATTIN [018
WNSYDTHD VLYQ 7] -
619
ANSYD3HD
TIn4 ™N-G09
009
€1 379 IVAY WNSHOIHD TYNIA l INYYY SY3AYH
0} 03 LNdINOD WNSHDTHD HO4 SHOLOVA
I }
TAYY 1300V
< INIL

00,

US 9,214,957 B2

Sheet 7 of 7

Dec. 15, 2015

U.S. Patent

A

06
6g6 59
X 116 N\
Y \
43TI04INOD | S0 JOV443INI
000 |
i e S WOMIN TN09%
/ ¥ITIONINOD
076 ot AON ASOWN OIS Nz
4ITIONINOD Y 106
i1 AVIdSI0 HOSS3004 g
\
0l6
086)

=

US 9,214,957 B2

1

CHECKSUM CALCULATION, PREDICTION
AND VALIDATION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of U.S. patent applica-
tion Ser. No. 13/117,294, filed May 25, 2011, which issued as
U.S. Pat. No. 8,683,307 on Mar. 25, 2014, the disclosure of
which is incorporated by reference herein in its entirety.

BACKGROUND

The present invention relates to network protocols, and
more specifically, to checksum calculation, prediction and
validation in network protocols.

Checksums are used by the Internet Protocol (IP), Trans-
mission Control Protocol (TCP) and User Datagram Protocol
(UDP), among others, for header and payload validation of
data transferred across Ethernet networks. The data which
each checksum covers is rigidly defined for each protocol,
however given the “left to right”, or serial data stream, nature
of Ethernet networks checksums are typically calculated in a
linear fashion. This relies on having a complete or steady
supply of data available at the time of computation. Further-
more, the process of checksum computation requires a sig-
nificant amount of processing time and lends itself to being
done in a hardware accelerator. Large send is another check-
sum feature whereby the host processor offloads TCP seg-
mentation to a hardware engine or co-processor. A problem
with this linear approach arises when data pieces arrive out of
order or at different stages of processing, are stored in disjoint
memory locations, or any other scenario where a complete
and steady data throughput is not sustainable, all of which are
often encountered in hardware accelerator Ethernet imple-
mentations.

SUMMARY

Exemplary embodiments include a checksum calculation
and validation method. The method can include receiving a
portion of a data packet in a data buffer, computing, in a
processor, information related to the checksum of the data
packet based on the portion of the data packet and processing
the data packet in the processor.

Additional exemplary embodiments include a checksum
calculation and validation method. The method can include
receiving headers for a data packet in a reception data buffer,
computing the expected full checksum for the data packet in
aprocessor based on the received headers, receiving an actual
checksum for the data packet in the reception data buffer and
comparing the expected full checksum to the actual check-
sum for the data packet.

Additional exemplary embodiments include a checksum
calculation and validation method. The method can include
receiving headers for a data packet in a transmission data
buffer, computing factors related to the headers in a processor,
receiving an actual checksum for the data packet in the recep-
tion data buffer, subtracting irrelevant factors from the data
packet and inserting the actual checksum into the data packet.

Further exemplary embodiments include a checksum cal-
culation and validation system. The system can include a host
system, a network interface, a reception pipeline disposed
between the host system and network interface and config-
ured to calculate an expected full checksum related to packets
received in the host system and a transmission pipeline dis-

10

15

20

25

30

35

40

45

50

55

60

65

2

posed between the host system and network interface and
configured calculate factors related to packets for transmis-
sion on the network interface.

Additional features and advantages are realized through
the techniques of the present invention. Other embodiments
and aspects of the invention are described in detail herein and
are considered a part of the claimed invention. For a better
understanding of the invention with the advantages and the
features, refer to the description and to the drawings.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The subject matter which is regarded as the invention is
particularly pointed out and distinctly claimed in the claims at
the conclusion of the specification. The forgoing and other
features, and advantages of the invention are apparent from
the following detailed description taken in conjunction with
the accompanying drawings in which:

FIG. 1 illustrates an example of a TCP/IP packet as
received by or prepared and suitable for transmission over a
network, with its major structures labeled.

FIG. 2 illustrates a block diagram of an exemplary check-
sum calculation and validation system.

FIG. 3 diagrammatically illustrates a method for comput-
ing an expected full checksum for all data, in a reception
pipeline, in accordance with exemplary embodiments.

FIG. 4 illustrates an example of a timeline illustrating that
the method of FIG. 3 proceeds when the headers first arrive.

FIG. 5 diagrammatically illustrates a method for final com-
parison of an expected checksum and full checksum in accor-
dance with exemplary embodiments.

FIG. 6 diagrammatically illustrates a method for comput-
ing an expected full checksum for insertion into data, in a
transmission pipeline, in accordance with exemplary embodi-
ments.

FIG. 7 illustrates an example of a timelines illustrating that
the method of FIG. 6 proceeds when the headers first arrive.

FIG. 8 diagrammatically illustrates a method for compu-
tation of an [.4 data checksum in accordance with exemplary
embodiments.

FIG. 9illustrates an exemplary embodiment of a system for
checksum calculation and validation illustrating further
details of the system of FIG. 2.

DETAILED DESCRIPTION

In exemplary embodiments, the systems and methods
described herein calculate checksums over bulk data (i.e., a
full or bulk checksum), and include provisions to factor out
irrelevant data (i.e., factors) where appropriate. The founda-
tion of this method relies on exploiting the commutative
property of checksums to use the data available to predict a
bulk checksum suitable for comparison. As such, calculating
checksums over bulk data can be performed as disjoint opera-
tions and separate times. In this way, the full checksum can be
predicted and is suitable for comparison before the data is
ready. The data pipeline can keep flowing in this manner.

FIG. 1 illustrates an example of a TCP/IP packet as
received by or prepared and suitable for transmission over a
network, with its major structures labeled. The TCP/IP packet
100 is shown for illustrative purposes. It will be appreciated
that other protocols that implement checksum are contem-
plated in other exemplary embodiments. The packet 100 and
its data are defined collectively as A. As known in the art,
protocol packets such as the packet 100 can include multiple
layers in their associated data headers. In the example illus-

US 9,214,957 B2

3

trated in FIG. 1, the packet 100 includes a [.2 layer header, B,
a L3 layer header, C, a L4 layer header E, and a pseudo-
header, D, which links the [.3 layer header, C, and the [.4 layer
header E. The pseudo-header, D, is a data structure used in the
computation of checksums only and is not an actual data field.
Rather, pseudo-header, D, includes portions of data from the
L3 layer header, C, and the .4 layer header, E. There are
checksum fields within the L3 layer header, C, and [.4 layer
header, E, which is both extracted and computed, then com-
pared, to validate successtul data transmission. The remain-
ing portion of the packet is the data. In exemplary embodi-
ments, as further described herein, the entire packet
checksum 100 can be represented as: A=B+C+E-D.

FIG. 2 illustrates a block diagram of an exemplary check-
sum calculation and validation system 200. In exemplary
embodiments, the system 200 can include a host system 201,
such as a computer system, in which packets such as the
packet 100 can be received from or transmitted to a network
such as a local area network (LAN) 202. In addition, the
system 100 can include a reception pipeline 205 through
which the packets can be processed and received in the host
system 201 from the LAN 202. The system 100 can also
include a transmission pipeline 250 through which the pack-
ets can be processed and transmitted from the host system 201
to the LAN 202.

In exemplary embodiments, the reception pipeline 205 can
include a reception buffer 210 into which packets are received
and buffered from the LAN 202. The reception pipeline 205
can further include an early inspection engine 215 operatively
coupled to the reception buffer 210, which is logic that com-
putes the checksum factors, which occurs early in the recep-
tion pipeline 205. The early inspection engine 215 extracts
and computes the checksum for .2 layer header, B, a .3 layer
header, C, and the [.4 layer header E from the reception buffer
210. The reception pipeline 205 can further include a full
checksum engine 220, which is the logic that continuously
computes the bulk or full checksum of the packet 100. The
full checksum engine 220 finishes processing once the packet
100 has been fully received in the reception buffer 210. As
such, the full checksum engine 220 computes the checksum
across the complete amount of data, A. The reception pipeline
205 further includes a checksum comparison logic 230 opera-
tively coupled between packet processing logic 225 and the
host system 201, and between the full checksum engine 220
and the host system 201. The checksum comparison logic 230
compares the checksum computed in the early inspection
engine 215 and the checksum computed in the full checksum
engine 220. As such, the checksum comparison logic 230 is a
final check that validates the checksum contained in the [.4
layer header E. As data is received from the LAN 202 in a
linear fashion, the early inspection engine 215 is able to start
once the headers have been successfully stored in local
memory, such as the reception buffer 210. The entire packet
100 does not necessarily have to be received at this time. For
example, the early inspection engine 215 is able to validate
the L3 layer header, C, checksum at the time of its running,
but it is not able to validate the L4 layer header, E, checksum.
In exemplary embodiments, the system 200, via the reception
pipeline 205 computes an expected “full” checksum, that is, a
checksum across all of the data, A, in the full checksum
engine 220. The reception pipeline 205 can further include
the packet processing logic 225 that represents all other
packet processing that occurs within the reception pipeline
205.

In exemplary embodiments, the transmission pipeline 250
can include a transmission data buffer 255 into which packets
are transmitted and buffered from the host system 201 for

10

15

20

25

30

35

40

45

50

55

60

65

4

ultimate transmission in the LAN 202. The transmission pipe-
line 250 can further include an early inspection engine 260
operatively coupled to the transmission data buffer 255,
which is logic that computes the checksum factors, which
occurs early in the transmission pipeline 250. The early
inspection engine 260 inserts and computes the checksum for
a L3 layer header, C, and the L4 layer header E for insertion
into the transmission buffer 255. In this example, the .2 layer
header, B, is an irrelevant factor as further described herein.
The transmission pipeline 250 can further include a full
checksum engine 265, which is the logic that continuously
computes the bulk or full checksum of the packet 100. The
full checksum engine 265 finishes processing once the packet
100 has been fully inserted into the transmission buffer 255.
As such, the full checksum engine 265 computes the check-
sum across the complete amount of data, A. The transmission
pipeline 250 further includes a checksum insertion logic 275
operatively coupled between packet processing logic 270 and
the host system 201, and between the full checksum engine
265 and the host system 201. The L3 layer header, C, is
calculated by the early inspection engine 260 and is inserted
into the transmission data buffer 255. Irrelevant factors iden-
tified by the early inspection engine are subtracted from the
full checksum via the full checksum engine to generate the [.4
layer header, E, which is inserted into the packet 100. In
exemplary embodiments, the system 200, via the transmis-
sion pipeline 250 computes a “full” checksum, that is, a
checksum across all of the data, A, in the full checksum
engine 265. The transmission pipeline 250 can further include
the packet processing logic 270 that represents all other
packet processing that occurs within the transmission pipe-
line 250.

FIG. 3 diagrammatically illustrates a method 300 for com-
puting an expected full checksum for all data, A, in the recep-
tion pipeline 205, in accordance with exemplary embodi-
ments. As described above, the computation for the full
checksum of all data A, can be given as: A=B+C+E-D. Dia-
grammatically, block 305 represents the actual extracted
checksum from the 1.3 layer header C. The block 310 repre-
sents the computed [.3 layer header, C. An exclusive “or” is
computed at block 306 to validate that the [.3 layer header, C
that was extracted matches the [.3 layer header, C that was
computed. At the same time, block 315 represents parsed data
from the packet 100 that is added to the computed L3 layer
header, C, at block 311. Block 320 represents a computed [.2
layer header, B that is added to the sum from block 311 at
block 316. Block 325 represents the pseudo-header, D that is
subtracted from the sum from block 316, at block 321. The
difference from block 321 is the expected full checksum at
block 330. As such, the method 300 illustrates that upon
receiving parts of the packet 100, the method 300 processes
whatever parts of the packet 100 that is received in the recep-
tion pipeline 205 and begins to compute what the checksum is
expected to be. The method 300 proceeds by extracting the
different headers, comparing the extracted portions of the
headers to computed headers, then subtracting out the
pseudo-header portions. FIG. 4 illustrates an example of a
timelines 400 illustrating that the method 300 proceeds when
the headers first arrive at t;. The expected full checksum is
then computed at t,, and the final checksum is complete at t;.
As such, expected checksum computation and header valida-
tion happens at the beginning of data arrival.

FIG. 5 diagrammatically illustrates a method 500 for final
comparison of an expected checksum and full checksum in
accordance with exemplary embodiments. At block 515, the
method 500 computes an exclusive “or” of the expected full
checksum at block 505 and the full checksum at block 510 to

US 9,214,957 B2

5

determine if the data checksum is good. Final comparison
occurs for inbound packets at the end of processing of the
packets. In this way, the method 500 takes the checksum that
comes with the packet and adds all of the components that
should be present as previously predicted by computing the
separate checksum header components as described herein.
In this way, time savings are realized because processing
begins on the packet 100 as soon as it begins to arrive.

The following reception example illustrates the method
described in FIGS. 3-4. The expected full checksum includes
the checksum of .3 layer header, C, and the checksum of 1.4
layer header, E, in the calculations. Therefore, the checksum
accumulated over the entire L3 layer header, C, would always
be x0000 (after ones complement) and the checksum accu-
mulated of the entire data portion of the entire [.4 layer
header, E, would also be x0000 (after ones complement). The
Expected Full Checksum formula essentially becomes the
following: Expected Full Checksum=(1.2 Checksum+
xFFFF+xFFFF-pseudo header checksum) xor xFFFF, or
A=(B+xFFFF+xFFFF-D) xor xFFFF. As such, the output of
the early inspection engine 215 operatively is the expected
full checksum the data A. Once all of the data has been
received, the full checksum engine 220 is complete and
obtains a computed value for the data A. The final validation
involves a comparison of expected data A against computed
data A, as performed in the checksum comparison logic 230
as described herein.

FIG. 6 diagrammatically illustrates a method 600 for com-
puting an expected full checksum for insertion into the data,
A, in the transmission pipeline 250, in accordance with exem-
plary embodiments. As described above, the computation for
the full checksum for insertion into the data, A, can be given
as: E=A—(B+C-D). Diagrammatically, block 605 represents
the computed checksum for the L3 layer header, C, which
ends up being inserted into the data A. The block 610 repre-
sents the computed [.2 layer header checksum, B that is added
at block 606. The block 615 represents the pseudo-header, D
that is subtracted from the sum from block 606, at block 611,
and is the irrelevant checksum factor that is eventually dis-
carded once the actual checksum is inserted and the full data
packet is transmitted. As such, the method 600 illustrates that
upon receiving parts of the packet 100, the method 600 pro-
cesses whatever parts of the packet 100 that is transmitted in
the transmission pipeline 250 and begins to compute what the
checksum to be inserted into the data packet 100. The method
600 proceeds by computing the different header checksums,
then subtracting out the irrelevant portions. FIG. 7 illustrates
an example of a timelines 700 illustrating that the method 600
proceeds when the headers first arrive at t, . The full checksum
is then computed at t,, and the final checksum is complete at
t5. As such, checksums are created and inserted into the head-
ers.

FIG. 8 diagrammatically illustrates a method for compu-
tation of an [.4 data checksum in accordance with exemplary
embodiments. At block 815, the method 800 subtracts the
irrelevant checksum factors at block 810 from the full check-
sum at block 805 to determine the [.4 layer header, E, that is
inserted into the data packet 100 for transmission. In this way,
the method 800 computes the final checksum in pieces as the
headers become available from the host system 201. In this
way, time savings are realized because processing begins on
the packet 100 as soon as it is available for transmission.

FIG. 9 illustrates an exemplary embodiment of a system
900 for checksum calculation and validation illustrating fur-
ther details of the system 200 of FIG. 2. The methods
described herein can be implemented in software (e.g., firm-
ware), hardware, or a combination thereof. In exemplary

10

15

20

25

30

35

40

45

50

55

60

65

6

embodiments, the methods described herein are implemented
in software, as an executable program, and is executed by a
special or general-purpose digital computer, such as a per-
sonal computer, workstation, minicomputer, or mainframe
computer. The system 900 therefore includes general-pur-
pose computer 901.

In exemplary embodiments, in terms of hardware architec-
ture, as shown in FIG. 9, the computer 901 includes a proces-
sor 905, memory 910 coupled to a memory controller 915,
and one or more input and/or output (I/O) devices 940, 945 (or
peripherals) that are communicatively coupled via a local
input/output controller 935. The input/output controller 935
can be, but is not limited to, one or more buses or other wired
or wireless connections, as is known in the art. The input/
output controller 935 may have additional elements, which
are omitted for simplicity, such as controllers, buffers
(caches), drivers, repeaters, and receivers, to enable commu-
nications. Further, the local interface may include address,
control, and/or data connections to enable appropriate com-
munications among the aforementioned components.

The processor 905 is a hardware device for executing soft-
ware, particularly that stored in memory 910. The processor
905 can be any custom made or commercially available pro-
cessor, a central processing unit (CPU), an auxiliary proces-
sor among several processors associated with the computer
901, a semiconductor based microprocessor (in the form of a
microchip or chip set), a macroprocessor, or generally any
device for executing software instructions.

The memory 910 can include any one or combination of
volatile memory elements (e.g., random access memory
(RAM, such as DRAM, SRAM, SDRAM, etc.)) and nonvola-
tile memory elements (e.g., ROM, erasable programmable
read only memory (EPROM), electronically erasable pro-
grammable read only memory (EEPROM), programmable
read only memory (PROM), tape, compact disc read only
memory (CD-ROM), disk, diskette, cartridge, cassette or the
like, etc.). Moreover, the memory 910 may incorporate elec-
tronic, magnetic, optical, and/or other types of storage media.
Note that the memory 910 can have a distributed architecture,
where various components are situated remote from one
another, but can be accessed by the processor 905.

The software in memory 910 may include one or more
separate programs, each of which comprises an ordered list-
ing of executable instructions for implementing logical func-
tions. In the example of FIG. 9, the software in the memory
910 includes the checksum calculation and validation meth-
ods described herein in accordance with exemplary embodi-
ments and a suitable operating system (OS) 911. The OS 911
essentially controls the execution of other computer pro-
grams, such the checksum calculation and validation systems
and methods as described herein, and provides scheduling,
input-output control, file and data management, memory
management, and communication control and related ser-
vices.

The checksum calculation and validation methods
described herein may be in the form of a source program,
executable program (object code), script, or any other entity
comprising a set of instructions to be performed. When a
source program, then the program needs to be translated via a
compiler, assembler, interpreter, or the like, which may or
may not be included within the memory 910, so as to operate
properly in connection with the OS 911. Furthermore, the
checksum calculation and validation methods can be written
as an object oriented programming language, which has
classes of data and methods, or a procedure programming
language, which has routines, subroutines, and/or functions.

US 9,214,957 B2

7

In exemplary embodiments, a conventional keyboard 950
and mouse 955 can be coupled to the input/output controller
935. Other output devices such as the /O devices 940, 945
may include input devices, for example but not limited to a
printer, a scanner, microphone, and the like. Finally, the I/O
devices 940, 945 may further include devices that communi-
cate both inputs and outputs, for instance but not limited to, a
network interface card (NIC) or modulator/demodulator (for
accessing other files, devices, systems, or a network), a radio
frequency (RF) or other transceiver, a telephonic interface, a
bridge, a router, and the like. The system 900 can further
include a display controller 925 coupled to a display 930. In
exemplary embodiments, the system 900 can further include
a network interface 960 for coupling to a network 965. The
network 965 can be an IP-based network for communication
between the computer 901 and any external server, client and
the like via a broadband connection. The network 965 trans-
mits and receives data between the computer 901 and external
systems. In exemplary embodiments, network 965 can be a
managed [P network administered by a service provider. The
network 965 may be implemented in a wireless fashion, e.g.,
using wireless protocols and technologies, such as WiFi,
WiMax, etc. The network 965 can also be a packet-switched
network such as a local area network, wide area network,
metropolitan area network, Internet network, or other similar
type of network environment. The network 965 may be a fixed
wireless network, a wireless local area network (LAN), a
wireless wide area network (WAN) a personal area network
(PAN), a virtual private network (VPN), intranet or other
suitable network system and includes equipment for receiv-
ing and transmitting signals.

If'the computer 901 is a PC, workstation, intelligent device
or the like, the software in the memory 910 may further
include a basic input output system (BIOS) (omitted for sim-
plicity). The BIOS is a set of essential software routines that
initialize and test hardware at startup, start the OS 911, and
support the transfer of data among the hardware devices. The
BIOS is stored in ROM so that the BIOS can be executed
when the computer 901 is activated.

When the computer 901 is in operation, the processor 905
is configured to execute software stored within the memory
910, to communicate data to and from the memory 910, and to
generally control operations of the computer 901 pursuant to
the software. The checksum calculation and validation meth-
ods described herein and the OS 911, in whole or in part, but
typically the latter, are read by the processor 905, perhaps
buffered within the processor 905, and then executed.

When the systems and methods described herein are imple-
mented in software, as is shown in FIG. 9, the methods can be
stored on any computer readable medium, such as storage
920, for use by or in connection with any computer related
system or method.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable medium(s) having computer read-
able program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-

10

15

20

25

30

35

40

45

50

55

60

65

8

able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the
remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described below with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to a processor of a
general purpose computer, special purpose computer, or other
programmable data processing apparatus to produce a
machine, such that the instructions, which execute via the
processor of the computer or other programmable data pro-
cessing apparatus, create means for implementing the func-
tions/acts specified in the flowchart and/or block diagram
block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to

US 9,214,957 B2

9

function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computer, other programmable data processing appa-
ratus, or other devices to cause a series of operational steps to
be performed on the computer, other programmable appara-
tus or other devices to produce a computer implemented
process such that the instructions which execute on the com-
puter or other programmable apparatus provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods and computer program
products according to various embodiments of the present
invention. In this regard, each block in the flowchart or block
diagrams may represent a module, segment, or portion of
code, which comprises one or more executable instructions
for implementing the specified logical function(s). It should
also be noted that, in some alternative implementations, the
functions noted in the block may occur out of the order noted
in the figures. For example, two blocks shown in succession
may, in fact, be executed substantially concurrently, or the
blocks may sometimes be executed in the reverse order,
depending upon the functionality involved. It will also be
noted that each block of the block diagrams and/or flowchart
illustration, and combinations of blocks in the block diagrams
and/or flowchart illustration, can be implemented by special
purpose hardware-based systems that perform the specified
functions or acts, or combinations of special purpose hard-
ware and computer instructions.

In exemplary embodiments, where the checksum calcula-
tion and validation methods are implemented in hardware, the
checksum calculation and validation methods described
herein can implemented with any or a combination of the
following technologies, which are each well known in the art:
adiscrete logic circuit(s) having logic gates for implementing
logic functions upon data signals, an application specific
integrated circuit (ASIC) having appropriate combinational
logic gates, a programmable gate array(s) (PGA), a field
programmable gate array (FPGA), etc.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one more other features, integers, steps, operations, ele-
ment components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act

10

15

20

25

30

35

40

45

50

55

10

for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiment was chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of
ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated

The flow diagrams depicted herein are just one example.
There may be many variations to this diagram or the steps (or
operations) described therein without departing from the
spirit of the invention. For instance, the steps may be per-
formed in a differing order or steps may be added, deleted or
modified. All of these variations are considered a part of the
claimed invention.

While the preferred embodiment to the invention had been
described, it will be understood that those skilled in the art,
both now and in the future, may make various improvements
and enhancements which fall within the scope of the claims
which follow. These claims should be construed to maintain
the proper protection for the invention first described.

What is claimed is:

1. A checksum calculation, prediction and validation
method, comprising:

receiving a portion of a data packet in a transmission data

buffer, wherein the portion of the data packet is a data
header;

computing, in a processor, information related to a check-

sum of the data packet based on the portion of the data
packet, wherein the information related to the checksum
of the data packet are computed checksum factors of the
data packet; and

processing the data packet in the processor.

2. The method as claimed in claim 1 further comprising:

receiving an actual checksum of the data packet in the

transmission data buffer; and

subtracting irrelevant factors from the data packet.

3. The method as claimed in claim 2 wherein processing the
data packet comprises inserting the actual checksum into the
data packet for transmission.

4. A checksum calculation, prediction and validation
method, comprising:

receiving headers for a data packet in a transmission data

buffer;

computing factors related to the headers in a processor;

receiving an actual checksum for the data packet in the

reception data buffer;

subtracting irrelevant factors from the data packet; and

inserting the actual checksum into the data packet.

#* #* #* #* #*

